袁赛瑜

发布者:水电院发布时间:2020-04-07浏览次数:8152

姓  名

袁赛瑜

性  别

出生年月

19873

职  称

教授

毕业学校

365英国上市官网

专  业

水力学及河流动力学

学 位

博士

联系电话


电子邮件

 yuansaiyu@hhu.edu.cn

研究方向

平原河网水动力学、河流动力过程及生态环境响应、河湖水生态环境治理

获奖情况


2021年,国家级人才计划青年项目入选者

2021年,江苏省“333高层次人才培养工程”

2019年,中国科协“优秀中外青年交流计划”

2019年,霍英东教育基金会青年教师基金获得者

2018年,江苏省“科协青年科技人才托举工程” 

2017年,江苏省科学技术一等奖,平原河流水沙运动模拟测控成套技术与应用(9/11)

2017年,大禹水利科技二等奖,滨海城市洪涝风险预判与智能跟踪关键技术及应用(9/12)

2017年,365英国上市官网“大禹学者”

2015年,江苏省优秀博士学位论文

2013年,江苏省科学技术一等奖,复杂河网水力调控关键技术及实践(8/11)

主要成果

365英国上市官网教授、博士生导师,国家级人才计划入选者、霍英东教育基金会青年教师基金获得者,入选中国科协优秀中外青年交流计划、江苏省科协青年托举工程。担任SCI期刊《Journal of Coastal Research》副主编、International Hydropower Association委员、江苏省水力发电工程学会理事等职。长期从事河流动力过程及生态环境响应方面的理论研究和工程实践,与剑桥大学、奥克兰大学、渥太华大学、爱荷华大学等学府著名学者保持长期学术合作,合作开展野外观测、数学模拟和室内试验方面的研究。主持国家自然基金面上项目、青年基金、霍英东基金、国家重点研发计划专题等项目17项,承担淮河洪涝治理与水环境提升、南水北调东线二期线路优化、鄱阳湖水生态治理、瘦西湖水环境提升、上海河网水资源配置等重要工程研究项目。成果发表在《Water Resources Research》、《Journal of Hydrology》、《Geomorphology》、《Journal of Hydraulic Research》等水力学权威期刊上,发表SCI检索论文30余篇(第一/通讯作者15篇);出版国际水利与环境工程学会(IAHR)英文专著、中文专著各1部;授权发明5项(PCT国际专利1项)、软件著作权1项;参编国家、行业标准3部。多次受邀在奥克兰大学等学府以及重要学术会议做演讲报告。获2013、2017年江苏省科学技术一等奖、2017年大禹水利科技二等奖、江苏省优秀博士学位论文。

代表性论著:

  

[1]Yuan S., Tang H., Li K., et al. Hydrodynamics, sediment transport and morphological features at the confluence between the Yangtze River and the Poyang Lake. Water Resources Research, 2021, 57.

[2]Yuan S., Tang H., Xiao Y., et al. Phosphorus contamination of the surface sediment at a river confluence. Journal of Hydrology, 2019, 573, 568-580.

[3]Yuan S., Zhu Y., Tang H., et al. Planform evolution and hydrodynamics near the multi-channel confluence between the Yarlung Zangbo River and the delta of the Niyang River. Geomorphology, 2022: 108157.

[4]Yuan S., Tang H., Xiao Y., et al. Water flow and sediment transport at open-channel confluences: an experimental study. Journal of Hydraulic Research, 2018, 56(3), 333-350. 

[5]Yuan S., Xu L., Tang H., et al. Swimming behavior of juvenile silver carp near the separation zone of a channel confluence. International Journal of Sediment Research, 2022, 37(1): 122-127.

[6]Yuan S., Xu L., Tang H., et al. The dynamics of river confluences and their effects on the ecology of aquatic environment: A review. Journal of Hydrodynamics, 2022.

[7]Yuan S., Tang H., Xiao Y., et al. Spatial variability of phosphorus adsorption in surface sediment at channel confluences: Field and laboratory experimental evidence. Journal of Hydro-environment Research, 2018, 18, 25-36. 

[8]Yuan S., Tang H., Xiao Y., et al. Turbulent flow structure at a 90-degree open channel confluence: accounting for the distortion of the shear layer. Journal of Hydro-environment Research, 2016, 12, 130-147.

[9]Yuan S., Tang H., Li L., et al. Combined wave and surge overtopping erosion failure model of HPTRM levees: accounting for grass-mat strength. Ocean Engineering, 2015, 109, 256-269.

[10]Yuan S., Li L., Amini F., et al. Turbulence measurement of combined wave and surge overtopping of a full-scale HPTRM-strengthened levee. Journal of Waterway Port Coastal & Ocean Engineering-ASCE, 2014, 140(4), 86-95. 

[11]Yuan S., Li L., Amini F., et al. Sensitivity of combined turbulent wave overtopping and storm surge overflow response to variations in levee geometry. Journal of Coastal Research, 2015, 313(3):702-713. 

[12]Yuan S., Li L., Amini F., et al. Numerical study of turbulence and erosion of an HPTRM-Strengthened Levee under combined storm surge overflow and wave overtopping. Journal of Coastal Research, 2014, 293(1):142-157.

[13]Yu Q., Yuan S., Rennie C.D. Experiments on the morphodynamics of open channel confluences: Implications for the accumulation of contaminated sediments. Journal of Geophysical Research: Earth Surface, 2020, 125, e2019JF005438. 

[14]Li L., Yuan S., Amini F., et al. Numerical study of combined wave overtopping and storm surge overflow of HPTRM strengthened levee. Ocean Engineering, 2015, 97, 1-15.

[15]Tang H, Cao H, Yuan S., Yang Xiao, Chenyu Jiang, Carlo Gualtieri. A numerical study of hydrodynamic processes and flood mitigation in a large river-lake system [J]. Water Management Research, 2020, 34, 3739-3760.

[16]Tang H., Zhang H., Yuan S. Response to discussion of hydrodynamics and contaminant transport on the degraded bed at a 90-degree channel confluence. Environmental Fluid Mechanics, 2018, 18(9), 1297–1299.

[17]Tang H., Zhang H., Yuan S. Hydrodynamics and contaminant transport on a degraded bed at a 90-degree channel confluence. Environmental Fluid Mechanics, 2018, 18(2), 443-463.

[18]Xiao Y., Xia Y., Yuan S., et al. Distribution of phosphorus in bed sediment at confluences responding to hydrodynamics. Water Management, 2019, 172(3): 149-162.

[19]Xiao Y., Xia Y., Yuan S., et al. Flow structure and phosphorus adsorption in bed sediment at a 90° channel confluence. Journal of Hydrodynamics, 2017, 29(5), 902-905.

[20]Tang H., Li Q., Yuan S., et al. Effect of aggregation on the adsorption of phosphorus onto air-dried sediment in contrasting shear flow conditions. Journal of Soils and Sediments, 2017, 17(8), 2177–2186.

[21]Du Q., Tang H., Yuan S., et al. Predicting flow rate and sediment in bifurcated river branches. Water Management, 2016, 169(4), 156-167.

[22]Wang H., Tang H., Yuan S., et al. An experimental study of the incipient bed shear stress partition in mobile bed channels filled with emergent rigid vegetation. Science China Technological Sciences, 2014, 57(6), 1165-1174.

[23]Zhao H., Yan J., Yuan S., et al. Effects of submerged vegetation density on turbulent flow characteristics in an open channel. Water, 2019 11(10): 2154.

[24]Tang H., Zhao H., Li Z., Yuan S., et al. Phosphorus sorption to suspended sediment in freshwater. Water Management, 2017, 170(5), 231-242.

[25]Tang H., Tian Z., Yan J., Yuan S. Determining drag coefficients and their application in modelling of turbulent flow with submerged vegetation. Advances in Water Resources, 2014, 69, 134-145. 

[26]Jin G., Yang W., Xu H., Zhang Z., Yuan S., et al. Density effects on solute release from streambeds. Hydrological Processes, 2020, 34(5), 1144-1153. 

[27]Zhang T, Xiao Y, Liang D, Tang H, Yuan S, et al. Rainfall Runoff and Dissolved Pollutant Transport Processes Over Idealized Urban Catchments. Front. Earth Sci., 2020, 8:305.

[28]Xiao, Y., Jia, H., Guan, D., Liang, D., Yuan, S., Tang, H. (2021). Modeling clear-water scour around the high-rise structure foundations (HRSF) of offshore wind farms. Journal of Coastal Research, 37(4), 749-760.

[29]Xiao, Y., Jia, H., Guan, D., Liang, D., Yuan, S., Tang, H. (2021). Experimental investigation on scour topography around high-rise structure foundations. International Journal of Sediment Research, 36(3), 348-361.

[30]Liu, J., Zhang, P., Xiao, Y., Wang, Z., Yuan, S., Tang, H. (2021). Interaction between dual spherical particles during settling in fluid. Physics of Fluids, 33(1), 013312.

[31]Zhang, T., Xiao, Y., Liang, D., Tang, H., Xu, J., Yuan, S., ... & Luan, B. (2021). A two‐layer model for studying 2D dissolved pollutant runoff over impermeable surfaces. Hydrological Processes, 35(5), e14152.

[32]Zhang, T., Xiao, Y., Liang, D., Tang, H., Xu, J., Yuan, S., & Luan, B. (2020). A physically-based model for dissolved pollutant transport over impervious surfaces. Journal of Hydrology, 590, 125478.

在研项目

1.霍英东青年教师基金,河道交汇处物质输移与鱼类运动行为的响应机制,主持

2.国家自然基金面上项目,非恒定交汇流物质输移与水力调控,主持

3.国家自然基金青年基金,平原河网交汇处复杂河床下污染物迁移转化规律,主持

4.国家重点研发计划子题,淮河干流与洪泽湖演变及治理,主持

5.工程项目,南昌市赣江东岸岸线生态综合治理工程防洪评价,主持

6.工程项目,上海市水利控制片水资源调度实施细则修编项目,主持

个人主页

https://www.researchgate.net/profile/Saiyu_Yuan

 https://www.yicode.org.cn/people/yuan-sai-yu/





Baidu
sogou